
Generalized codes and their application to Ising models with four-spin interactions including

the eight-vertex model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1974 J. Phys. A: Math. Nucl. Gen. 7 1596

(http://iopscience.iop.org/0301-0015/7/13/014)

Download details:

IP Address: 171.66.16.87

The article was downloaded on 02/06/2010 at 04:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/7/13
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A:  Math., Nucl. Gen., Vol. 7, No. 13, 1974. Printed in Great Britain. @ 1974 
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Abstract. Generalized codes are defined for the simple quadratic lattice and it is shown 
how they may be used to derive high magnetic field or low temperature expansions for two 
Ising-type models with four-spin interactions. One of these models, namely Baxter’s 
eight-vertex model, has critical exponents which are known to depend on x, the ratio of the 
strengths of the four-spin to two-spin interactions. The series so derived are analysed to 
yield estimates of the critical exponent 6 for the magnetization as a function of magnetic 
field at T,. The results for both models are consistent with a constant value 6 = 15 independ- 
ent of x as predicted by the scaling laws. 

1. Introduction 

In this paper we introduce generalized codes for the simple quadratic lattice, and show 
how they may be used to derive low temperature or high magnetic field expansions for 
several spin Ising-type models on the square lattice. These include, in addition to the 
standard Ising models with first and with first and second neighbour interactions (models 
SQ( 1) and SQ( 1,2), respectively), two models having four-spin interactions around each 
of the underlying squares of the lattice. One of these models is the isotropic case of 
Baxter’s eight-vertex model in nonzero magnetic field (Baxter 1972), the other a model 
first studied by Theodorakopoulos (1972) and independently by Oitmaa and Gibberd 
(1973). We refer to these as model B and model T/OG, respectively. Finally, we study 
the exponent 6 for both these models by deriving and analysing the first six coefficients 
(through p 6 )  of the series for the magnetization in a magnetic field along the critical 
isotherm. The results are compared with predictions based upon the scaling laws 
(Fisher 1967, Barber and Baxter 1973) and the exact, conjectured or estimated values of 
other exponents. 

Other applications of the generalized codes include the derivation of series expansions 
for the eight-vertex model in nonzero electric and magnetic fields. We remark that the 
eight-vertex model was originally proposed, not as a magnetic model but as one of 
ferroelectrics. (The equivalence was first pointed out by Wu (1971) and Kadanoff and 
Wegner (1971)) The two formulations lead naturally to two types of field, namely 
magnetic and electric. To deal with this situation, Enting (1973) has introduced a 
subscript notation : the exponents fi, y’, y ,  6,. . . (Fisher 1967) are given subscripts e or m 
depending on whether they refer to electric or magnetic fields, respectively. In this 
paper, 6, is investigated ; however, since no confusion can arise the subscript m is 
omitted. The corresponding exponent 6, has been studied by Enting and Gaunt (1974). 
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Baxter’s exact solution of the eight-vertex model has generated considerable interest 
in Ising models with multiple spin interactions; for example, Wegner (1971), Baxter and 
Wu (1973), Wood and Griffiths (1973, 1974) and Griffiths and Wood (1973), which also 
contains a useful summary of most work except the very recent. It appears that these 
models may exhibit critical behaviour which is quite different to that of the Ising model 
with pair interactions only. Using numerical techniques (Gaunt and Guttmann 1974) 
originally developed for the simple Ising model and similar problems, Griffiths and 
Wood (1973) predicted that the triangular lattice with pure triplet interactions should 
have an usually large specific heat exponent U’. This was subsequently confirmed by 
exact calculation (Baxter and Wu 1973). These techniques have also enabled the 
dependence of the susceptibility exponent y (Ditzian 1972) and spontaneous magnetiza- 
tion exponent P (Oitmaa 1974) on the strength of the four-spin interaction to be eluci- 
dated for the eight-vertex model. The results are in good agreement with the conjectured 
variations (Barber and Baxter 1973). The work cited above justifies the application of 
the conventional techniques of series analysis to the models studied in this paper. 

The ‘code’ method of deriving low temperature or high field expansions for an Ising 
ferromagnet (or antiferromagnet) has been described in detail elsewhere (Sykes er al 
1965, 1973a,b,c,d,e to be referred to as I, 11, 111, IV, V, VI respectively). The general 
theory is given in I and 11. 

The problem for the simple quadratic lattice may be thought of as one of counting 
and coding arrangements of squares on the square lattice. This combinatorial problem 
is closely related to the strong graph expansion (Sykes et al 1966) for SQ(1,2). The 
general form of a code is 

(2, a, P,  A = a+P+y+G, 

where a, p, y, S are the number of vertices belonging to 1,2,3,4 squares, respectively. 
(No confusion should arise between this and the exponent notation.) For example, 

has the code (16,8,5,2,1). To derive the complete nth code F,, all the ways in which n 
squares may be chosen on the simple quadratic lattice must be counted and coded. 
Thus, for two squares there are three distinct cases : 

Corner-to-corner (2N) 

(c)  0 Separated ( ) N 2  - 4 4 N )  

from which we obtain 

F2 = 2(6,4,2) + 2(7,6, 1) - %8,8). 
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Sykes et a1 give the first seven complete codes F1, F 2 ,  . . . , F, in I and 111. Corresponding 
results for other lattices have also been derived (see I, I11 and V). 

More generally, for any loose-packed lattice of coordination number q, an nth 
order code (ie one contained in F,,) may be interpreted by the substitution 

, A = a+P+y+.  . . , (1.2) 
m ( 1  + bX)"(l+ b2X)B(1 + b 3 X ) y . .  . 

(l+X)L (1, a, P, Y ,  . . .) = 

where the length of the integer sequence A, a, p, 7 , .  . . never exceeds (q+ 1). After expan- 
sion of the right-hand side of (1.2) the coefficient of X'YY4' represents the contribution 
of s Overturned spins on one sublattice (by convention, the A sublattice), n overturned 
spins on the other sublattice (B spins) having r nearest neighbour links between them. 
A second substitution 

x = y = p p ,  b = U - ' ,  (1.3) 

is required to make contact with the low temperature Ising variables 

- 2mH - 45 
u = exp ( F). (1.4) 

(The usual notation is employed-see I and 11, for example.) The precise way in which 
the first N complete codes determine the first (2N+ 1) L-polynomials in the high-field 
expansion of the configurational free energy, 

W 

In A = Ls(u)ps 
s =  1 

is described in I and 11. The high-field polynomials are given in I, I11 and V. 
If (1.5) is re-arranged as a U grouping or low temperature expansion 

In A = 1 V+~(P)U', 
S 

(1.5) 

relatively few complete V+ polynomials are obtained ; this is because quite low powers 
of U can come from high-order L polynomials. To extend the U grouping, the leading 
terms in higher L polynomials must be determined. These extra coefficients can be 
obtained by enumerating only those codes whose expansions will make a contribution 
to the required coefficient. This leads to the concept of a partial code F:'"), which contains 
the subset of codes of F,, required in the derivation of the U grouping correct through 
V + m .  Further details are given in IV and VI. 

In the next section, the simple quadratic code system outlined above is generalized 
so as to contain additional detailed information about the underlying graphs. The 
first six generalized complete codes are derived. Their interpretation is quite different 
to that described by the substitutions (1.2) and (1.3) above. Instead, direct substitutions 
are developed (see equations (2.13), (2.14), (2.17), (2.18) and (2.19)) which are more akin 
to the substitutions used by Sykes et al in I1 for interpreting the honeycomb and diamond 
codes on the triangular and face-centred cubic lattices, respectively. These substitutions 
enable us to derive the first six terms of a high-field expansion-the analogue of (1.5)- 
for various Ising models, including SQ(l,2), B and T/OG. The low temperature zero- 
field series derived by Oitmaa (1974) for models B and T/OG are then checked by 
deriving generalized partial codes ; these also contain the complete field dependence. 
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2. Generalized codes: their definition and some applications 

2.1. Generalized complete codes 

We begin by observing that the mutual contact of two squares at a common vertex 
can occur in two quite distinct ways depending on whether the squares in question do 
or do not touch along an edge. The situation is easily understood with the aid of a 
simple example, 

U 
in which the two types of second-order contact are distinguished by full (type 1) and 
open (type 2) circles. If P I  and P2 are the number of second-order contacts of type 1 and 
type 2, respectively, then clearly 

P I + P Z  = P. (2.1) 

We may now define a generalized code ; the general form is 

(Aa,PllPa>Y,6), A = C c + P , + / 3 2 + y + 6 .  (2.2) 

Thus, a generalized code is nothing more than a code in which the information about 
the two types of second-order contact is kept separate. As an example, the configuration 
of seven squares drawn in 4 1, having the 7th order code (16,8,5,2, l), has the generalized 
7th order code (16,8,411,2, 1). 

Note that there is no corresponding subdivision for a, y and 6 ;  this is because first- 
order, third-order and fourth-order contacts are of one type only. 

The analogue of F,, is the generalized complete nth code 

Gn = 1’ ( 1 9  P 1  I P Z  9 Y> 6) (2.3) 

where here and below C’ indicates a sum over all generalized nth order codes. (As usual, 
we shall not introduce a notation for the occurrence factors.) For example, from the 
three possibilities for two squares drawn in $1, we get 

(2.4) 

in place of (1.1). Likewise the first six generalized complete codes G, through G6 have 
been derived and are given in appendix 2. We have checked that these data reduce 
correctly to the Fn when the distinction between the two types of second-order contact 
is not retained, ie 

(2.5) 

Gz = 2(6,4,2(0) + 2(7,6,0ll) - 4f(8,8) 

Fn = E’ (A a, P1+ P z  3 Y, 6). 

2.2. Applications 

Our main application is the derivation of high magnetic field expansions for two models 
with the hamiltonian 

P = - J C  aiaj - J 4  aiaja,al - m H C ai 
< W  (i jk l )  i 
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where the variables have the values +1. The four-spin interaction is of strength J4 
and the appropriate summation is over all basic squares of the simple quadratic lattice. 
The pair interaction of strength J is summed over either nearest neighbour sites or next 
nearest neighbour sites corresponding to models T/OG and B, respectively. The last 
summation in (2.6) is taken over all lattice sites. 

The free energy per spin is 

f = -25-J4-mH-kTlnA, (2.7) 

where power series expansions for the configurational free energy In A can be derived 
by enumerating successive perturbations from the ordered ground state. Oitmaa (1974) 
employed a technique used by Fan and Wu (1969) to show how this may be conveniently 
done by enumerating ‘polygon’ configurations on the dual lattice and associating 
weight factors with the different vertex types. He finds 

In A = C , U ~ W ~ ~ ~ ,  
(G) 

where 

- 45 -2J4 - 2mH 
U = w( r), 

The sum is over all graphs G embeddable in the simple quadratic lattice having vertices 
of even order (‘polygons’) and C, is the weak lattice constant of G (Sykes et a1 1966). 
Expressions for a, b and c are : 

Model TIOG 

a = i n B  

b = nZE 

c = n o + ~ n B - n 4 - n c + n H  1 

Model B 

a = nB-2n4-+n2, 

b = nZE 

c = no++nB-n4-nn,+nH 

(2.10) 

(2.11) 

where nB, n2E, n4, no ,  n, and nH are the number of bonds, elbows, fourth-order vertices, 
unoccupied interior sites, components and holes of G,  respectively. Elbows are second- 
order vertices which are the meet of perpendicular bonds. It is often necessary to 
distinguish between the two types of elbow that can occur and this may be conveniently 
done by assigning a direction to G such that it is traversed in a clockwise direction with 
respect to its interior. Denoting the number of right-hand and left-hand elbows by 
n2 and nZL, respectively, we have 

n2E = n 2 R  + n 2 L *  (2.12) 
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The meaning of the other terms (bonds, fourth-order vertices, holes, etc) should be 
self-evident but further clarification may be provided by an example : 

This has nB = 28, nZE = 14 ( n 2 R  = 9, n Z L  = 5 ) ,  n4 = 4, no = 1, n, = 1 and nH = 2. 
For further details, see Oitmaa (1974). Note, however, that his expression for c is 
identical to that in (2.10) and (2.11) but with nH 0 ;  it appears therefore that Oitmaa 
has overlooked the possibility of holes unless nH is somehow absorbed into his definition 
of n o .  

To relate these models to the generalized codes, we first notice that there is a one-to- 
one correspondence between the polygonal graphs contributing to (2.8) and the possible 
arrangements of squares on the square lattice. Furthermore, it can be shown that 
a, b and c for a particular polygonal graph are determined by the parameters a, p,, p 2 ,  y 
and the order n of the generalized code for the corresponding arrangement of squares. 
Thus, we find (see appendix 1 for proof) 

l n ~  = C f U f ( a + B ~ + 2 8 2 + ~ ) W a + ~  P n (model T/OG) (2.13) 

and 

In A = c ' ~ + ( a + 2 8 1 + Y ) ~ a + Y  P9 n (model B) (2.14) 

where the occurrence factors have been omitted in accord with our convention. The 
weak lattice constants CG appearing in (2.8) are obtained by collecting together the 
occurrence factors of those terms in (2.13) or (2.14) with the same powers of U, w, p. 
Using G ,  through G6 we now obtain the high-field expansions 

m 

In A = L,(u, w)ps 
s =  1 

(2.15) 

for models T/OG and B correct through p6. These are not given here explicitly since 
the substitutions (2.13) and (2.14) are quite straightforward. 

The generalized complete codes may also be used to derive high-field expansions 

(2.16) 

for model SQ(1,2): the standard Ising model with first and second neighbour inter- 
actions. The required substitution is clearly 

in A = C' u + ( a + B i + 2 B z + ~ ) y + ( a + 2 8 1 i ~ )  PY n (model SQU, 211, (2.17) 

where the powers of U and 8 are simply the powers of U in (2.13) and (2.14), respectively. 
The high-field polynomials g, through g6 derived in this way are in precise agreement 
with the results of Dalton and Wood (1969); this provides a further stringent check on 
the correctness of G I  through G6 . 
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If U = U'", ie the nearest neighbour interaction is twice the next nearest neighbour 
interaction, then (2.17) becomes 

l n ~  = ~ i U t a + ( 5 ~ + B z ) + t ~  P n, 

Since P I ,  Pz occur only in the combination (PI + P 2 ) ,  the generalized codes are not 
really necessary for the derivation of this expansion ; the conventional codes (1, a, P, y, 6) 
contain sufficient information for this purpose as was noted in 11, equation (3.10), (3.11) 
and associated discussion. 

By setting w = 1 in (2.13) and (2.14), we obtain the simple Ising model with nearest 
neighbour interactions only, 

l n ~  = C ~ i ( m + S i + 2 8 2 + ~ )  P ,  n (model SQ(1)) (2.18) 

(2.19) 

Alternatively, these results may be obtained by setting U = 1 or U = 1, respectively, in 
(2.17). Direct substitution in (2.18) or (2.19) using G ,  through G6 recaptures the first 
six polynomials L1 through 156 in (1.5). This method of derivation is quite different to 
that described in 0 1 of writing down the F, (using the known G, for example) and inter- 
preting the individual codes by the substitutions (1.2) and (1.3). As mentioned previously 
the direct substitutions (2.13), (2.14), (2.17), (2.18) and (2.19) have more in common with 
the substitutions developed in I1 for interpreting the honeycomb and diamond codes 
on the triangular and face-centred cubic lattices, respectively. 

2.3. Generalized partial codes and low temperature expansions 

Low temperature expansions analogous to (1.6) may be obtained on grouping (2.13) 
or (2.14) as 

(2.20) 

To obtain a useful number of terms we require the contributions from generalized 
codes of order n > 6. Let us define the generalized partial code CL"') as containing those 
generalized codes necessary for the derivation of the I),,(p)-polynomials for all values 
of s (< 2r )  when r = 2,3,. . . , m. We have used our unpublished data to deduce the 
CL"') through m = 8 (model T/OG) and m = 7 (model B). These data, which are given 
in appendix 3, enable us to check the low temperature zero-field expansions given by 
Oitmaa (1974). He expands the spontaneous magnetization in the form 

= 1-2Chr(w)ur 
r 

(2.21) 

where h,(w) are polynomials in w of degree less than or equal to 2r. (In Oitmaa's notation 
the h,(w) polynomials are denoted by Lr(w).) Using appendix 3 we are able to calculate 
the polynomials complete through h,(w) where m = 8 (model T/OG) and m = 7 
(model B). The results are in precise agreement with those given by Oitmaa. 

In addition, Oitmaa gives the leading terms urws in several higher-order polynomials 
correct through r + s = 15 (model T/OG) and r + s = 18 (model B). To check these, 
the contributions from additional generalized codes are also required, and these are 
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given in appendix 4. Again we obtain complete agreement with Oitmaa's results, 
except for the coefficient of w6 in h,(w) for model T/OG. We find 

@9,6(p) = 4 0 / ~ ~ + 3 2 / i ~ + 2 4 / ~ ~ + 4 0 p ' ~ + 3 2 p ~ ~  +24p1*+24p13 +32p14 

+8p1' +32p16+24p17+ 16p1'+8p19 (2.22) 

which yields 4032w6 for the required term; Oitmaa gives 3976w6t. We believe that 
Oitmaa has overlooked a configuration contributing to (2.22), possibly an 8 p 7 .  Needless 
to say, such a small discrepancy would make no practical difference to his estimates of 
the exponent p. 

We emphasize that although the main application we have made of the generalized 
codes in appendices 3 and 4 is to check Oitmaa's zero-field series for MO, they contain 
enough information to derive the complete field dependence of the low temperature 
expansions. Indeed we have derived and analysed (unpublished) the low temperature 
series for the zero-field susceptibility of Baxter's model. Unfortunately, convergence 
is too slow for us to draw any conclusions about the exponent 7'. 

3. Estimation of the critical exponent 6 

In the previous section we derived the high-field expansion 
czi 

In A = 1 ,!,,(U, w)ps 
s =  1 

(3.1) 

for models T/OG and B, correct through p 6 .  The magnetization along the critical 
isotherm (T = T,) is given by 

m 

where U,, w, are the values of U, w at T,  for some value of 

x = J4/J. (3.3) 

For model T/OG, estimates of T,  derived from high temperature susceptibility series 
are given by Oitmaa and Gibberd (1973) for several values of x ;  for model B, T,  may be 
calculated exactly for any x from Baxter's solution (Baxter 1972). In this last section we 
analyse the first six terms of the series (3.2) for 

X =  - ~ , 0 , $ , 1 , 1 ~ , 2 , 3 , 4 , 5 ,  

and estimate the exponent 6 defined by 

W X ; P )  - u-p)l'd, (T  = T,). (3.4) 
The possible variation of 6 with x is investigated and the results compared with pre- 
dictions obtained from the scaling laws. Unfortunately, as the series are not very long, 
the results tend to be somewhat inconclusive and should only be regarded as tentative. 
For comparison, the accepted result 6 = 15+*% for the conventional Ising model is 
based upon the first fifteen terms for the simple quadratic lattice (Gaunt and Sykes 
1972). Although reasonable estimates may be obtained from only six terms, the con- 
fidence limits are correspondingly larger (see figure 1 or 2 at x = 0). 
t Dr Oitmaa has informed the author that he now concurs with this value. 
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Figure 1. Pade estimates of l/S plotted against x for model T/OG. The broken line represents 
6 = 15 independent of x. 

-I 0 1 2 3 4 5  
X 

Figure 2. Pade estimates of 1/6 plotted against x for model B. The broken line represents 
S = 15 independent of x. The full curve is S = (7+a)/(l -a), which although providing 
a good fit, is quite wrong. 

All the standard techniques of series analysis as reviewed by Gaunt and Guttmann 
(1974) have been employed. The best results are those obtained by evaluating Padk 
approximants to the (1  -p)(d/dp) In M series at p = 1. These estimates of 1/6 are 
plotted against x in figures 1 and 2. 
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For model T/OG, the estimates were too irregular to draw any conclusions for 
x > 2. Oitmaa (1974) found an identical situation in his analysis of f i .  The remaining 
results are consistent with the hypothesis that 6 = 15 for all values of x. (6 = 15 is the 
accepted result for x = 0 (Gaunt and Sykes 1973).) Admittedly the estimate for x = -3 
is rather low but it should be remembered that as usual the error bars are not strict 
bounds but merely consistency limits (Gaunt and Guttmann 1974). (This is particularly 
clear in figure 2, where the error bars should not be interpreted as implying the accuracy 
for x = 1 and x = 2 is more than four times greater than it is for x = 13.) Oitmaa (1974) 
was also unable to draw any conclusions for x = -3 due to poor convergence. It is 
of course possible to interpret results with such large uncertainties in terms of a con- 
tinuous variation with x. However, the expectation that fi  = & and y = 12 independent 
of x (Oitmaa 1974, Theodorakopoulos 1972, Oitmaa and Gibberd 1973) suggests via 
the scaling laws that 6 = 15 independent of x is more likely. 

For the eight-vertex model (model B), it is not possible to fit the estimates in figure 2 
by a constant value of 6 for all -4 < x < 5. A continuous variation with x, on the other 
hand, is readily accommodated; indeed, if, as appears likely, fi  and a are both linear 
functions of a- (Baxter 1972, Barber and Baxter 1973) where 

li 1 
a = - = 1--cos-'(tanh2J4/kT,), 

II iT 

then in general we should expect 6 to be of the form 

A +  Ba 6=-. 
1-Ca 

(3.5) 

(We mention in passing that Enting and Gaunt (1974) found series estimates of 6, to be 
well described by (3.6) with A = 3, B = C = 1.) The curve in figure 2 corresponds to 
the simple choice 

A = 7, B = C = l .  (3.7) 

However, since this curve has nonzero gradient at x = 0 it disagrees with the first-order 
perturbation theory of Kadanoff and Wegner (1971). Even worse, if we use the exact 
result for a' = a (Baxter 1972) and the highly plausible conjecture for p (Barber and 
Baxter 1973), the curve violates the rigorous thermodynamic inequality a '+fi(l+6) 2 2 
for x e 0 (Griffiths 1965). Although it is just possible to construct curves through the 
error bars in figure 2 which are consistent with Griffiths inequality and have 6 = 15 
with nonzero slope at x = 0, none of these curves have the form (3.6). 

According to the scaling laws, the results for a and f i  (Baxter 1972, Barber and 
Baxter 1973) imply 6 = 15 independent of x which corresponds to A = 15, B = C = 0 
in (3.6). Since a breakdown of three-exponent scaling is rather unlikely-indeed it is 
known to be satisfied by the Ising case of the eight-vertex model and by the modified 
F-model case (Brascamp et a1 1973)-we seek an alternative explanation of the results 
in figure 2. We note first that in the interval -* < x < 14, the estimates can be fitted 
by a constant value of 6 = 15. If this value pertains for all x, the misleading nature of 
the estimates in figure 2 for x 2 2 must presumably be attributed to slow convergence. 
In this connection, Ditzian (1972) found no convergence for x 2 1.3 in her analysis of y, 
while Oitmaa's (1974) analysis of b was restricted to x < 3 for lack of convergence. 
Even in this region Barber and Baxter's conjectured lies outside (and above) the error 



1606 D S Gaunt 

bars given by Oitmaa for x > 0 in figure 3 of his paper ; the farther away from x = 0, the 
greater the discrepancy that was found. We conclude therefore that there is evidence 
to suggest a quite rapid deterioration in convergence as x increases. This conclusion 
receives further support from an analysis of the p series for -p(d/dp) In M ,  the coeffi- 
cients of which must approach 1/6. For x > 4 the coefficients exhibit an odd/even 
oscillation which increases with increasing x and makes extrapolation rather difficult. 
The alternation is due to a non-physical singularity on the negative real p axis moving 
closer to the origin as x increases. (A similar effect is also found for model T/OG.) 
We transform therefore to a new variable defined by 

where D is chosen (by Pad6 analysis of the (d/dp) In M (x; p) series) so as to transform 
the non-physical singularity far from the origin. The nth coefficient m, of the y series 
for -p(d/dp) In M must now approach 1/26y;-' as n -, W. Plots of 2m"yf-l against 
l /n  for n < 6 are smoothly varying, concave upward and have a degree of curvature 
which increases with increasing x. Assuming this behaviour continues for large n, 
we obtain, by extrapolating the last pair of points for each value of x, a lower bound for 
1/6 which turns out to lie close to the centre of the corresponding error bar in figure 2. 
Hence, the estimates in figure 2 are underestimates of the true value of 1/6 for x 2 $, 
the discrepancy increasing with increasing x. We conclude that figure 2 is not inconsistent 
with a constant value of 6 = 15 independent of x. 

To summarize, we have found that series estimates of 6 for Baxter's eight-vertex 
model (model B), and a model introduced by Theodorakopoulos and independently 
by Oitmaa and Gibberd (model T/OG), are not sufficiently precise for us to draw any 
firm conclusions. However, in the ranges -3 ,< x ,< 1) (model B) and -5 < x < 2 
(model T/OG), they are consistent with the scaling prediction that 6 = 15 independent 
of x( = J , /J ) .  

Acknowledgments 

I am indebted to Dr M F Sykes for his assistance in checking some of the formulae and 
d a h  used in this work. The comments of I G Enting on a draft of this paper are also 
gratefully acknowledged. 

Appendix 1. Proof of (2.13) and (2.14) 

We must prove 

a = 3@+P,+2PZ+Y), b = U + Y ,  c = n  

for model T/OG, and 

a = +(u+2P1+y), b = U + ? ,  c = n  

for model B, where a, b, c are given by (2.10) and (2.11). 
Clearly 

n 2 R  = n z L  = Y 
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and hence 

b = n2E = n2,+n2, = a+y ('4.4) 

for both models. 

gonal graph, we get 
By considering the number of bonds emanating from each type of vertex of a poly- 

nB = a + p 1 + 2 p 2 + y .  (A.5) 

a = +nB = 3 a + P 1 + 2 8 2 + y ) ,  

a = nB-2n4-+n2, = t ( a + 2 P , + y )  

n4 = B 2 '  (A.8) 

Hence, for model T/OG 

('4.6) 

(A.7) 

while for model B 

where we have substituted for n2E and nB from (A.4) and (A.5) respectively, and have used 

If we complete all internal bonds of a polygonal graph to obtain the corresponding 
arrangement of n squares, Euler's law gives 

(n+nH) = (n,+n,)-n,+n,. (A.9) 

Here n, and n, are the number of internal bonds and total number of sites respectively, 
and are given by 

(A. 10) 

(A. 1 1) 

n, = 2n - i n B  

n, = a+P1+B2+y+6.  

Substitution for n, using (A.9) and then for n, using (A.lO) gives 

c = no+)nB-n4-nc+n,  = n+nB-n4-n,+no (A.12) 

for both models. Finally, substituting for nB, n4, n,, no in (A.12) using (A.5), (A.8), (A.11) 
and 

no = 6, (A. 13) 

we get c = n. 
We note that the above equations are easily related to equations (3) in Oitmaa's 

paper. Indeed the first of his equations is identical to (A.5) above when written in 'his 
notation. His second equation is obtained from (A.9) by first substituting for n, from 
(A.10), and then for nB, n, and n using (A.5), (A. l l )  and 

(A. 14) 4n = a + 2(p1 + f i 2 )  + 3y + 46. 

This gives 

a-y = 2P2+4n,-4n, (A. 15) 

or in his notation (using (A.3) and (A.8)) 

n2R-n2L = 2n4+4n,-4nH. 

Again his expression has nH 0. 

(A. 16) 
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Appendix 2. Generalized complete codes Gn 

G I  = 1(4,4) 

G,  = 2(6,4,210) + 2(7, 6,011)- %8,8) 

G, = 2(8,4,410) + 4(8, 5,210, 1) + 8(9,6,211) - 24( 10,8,210) 

+ 6(10,8,012) - 28(11, 10,0(1) + 32&12, 12) 

G4 = 1(9,4,410,0, 1)+2(10,4,610)+8(10, 5,410, 1)+8(10,6,210,2) 

+ 16(11,6,411) + 20(11,7,211, 1)+ 1(12,8,014)+ 36(12,8,212) 

-61(12,8,4~0)-60(12,9,2~0,1)+18(13, 10,013)-208(13, 10,211) 

- 150(14, 12,012)+290(14, 12,210)+362(15, 14,011)-283&16, 16) 

G5 = 8(11, 5,410, 1, 1)+2(12,4,810)+ 12(12,5,610, 1)+28(12,6,410,2) 

+4(12,6,411,0, 1)+ 12(12,7,210,3)+ 1(12,8,010,4)+24(13,6,611) 

+4(13,7,213, 1)+80(13,7,411, 1)+48(13,8,211,2)- 16(13,8,410,0, 1) 

+4(14,8,2~4)+108(14,8,4~2)-112(14,8,6~0)+88(14,9,2~2, 1) 

-296(14,9,410, 1)- 144(14, 10,210,2)+8(15, 10,015)+ 152(15, 10,213) 

-752(15, 10,411)- 564(15, 11,211, 1)+ 34(16, 12,014)- 1432(16, 12,212) 

+ 1238(16, 12,4)0)+804(16, 13,210, 1)-712(17, 14,013)+4008(17, 14,211) 

+2866(18, 16,012)-3604(18,16,210)-4672(19, 18,0ll)+2771f-(20,20) 

G, = 2(12,4,610,0,2)+8(13,5,610, 1, 1)+28(13,6,410,2, 1)+4(13,7,210,3, 1) 

+2(14,4, lOlO)+16(14, 5,810, 1)+6(14,6,412,2)+60(14,6,610,2) 

+8(14,6,611,0, 1)+72(14,7,4(0,3)+40(14,7,4(1, 1, 1) 

+24(14, 8,2)0,4)+32(15,6,811)+8(15,7,413, 1)+ 180(15,7,6(1, 1) 

+ 16(15,8,213,2)+302(15,8,411,2)+ 18(15,8,412,0, 1) 

-40(15,8,610,0, 1)+84(15,9,2)1,3)-152(15,9,410, 1, 1) 

+8(15, lO,Ol1,4)+12(16, 8,414)+228(16,8,612)- 178(16,8,810) 

+36(16,9,214, 1)+552(16,9,412, 1)-796(16,9,610, 1)+216(16, 10,212,2) 

- 1126(16, 10,410,2)- 130(16, 10,411,0, 1)-252(16, 11,210,3) 

- 21( 16, 12,010,4) + 2( 17, 10,017) +48(17, 10,215) + 62q17, 10,413) 

- 1872(17, 10,611)+284(17, 11,213, 1)-4016(17, 11,411, 1) 

- 1472(17, 12,211,2)+222(17, 12,410,0, 1)+40(18, 12,016) 

+466(18, 12,214)-6696(18, 12,412)+35723(18, 12,610) 

-3852(18, 13,212, l)+6632(18, 13,410, 1)+2128(18, 14,210,2) 

-82(19, 14,0~5)-8480(19,14,2~3)+21476(19, 14,411) 
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+11 500(19, 15,211, 1)-2818(20, 16,0(4)+37880(20, 16,212) 

-21 920(20, 16,410)- 10604(20, 17,210, 1)+ 18768321, 18,013) 

-69224(21, 18,211)-49464(22,20,012)+45830(22,20,210) 

+ 60 860(23,22, O i l )  - 29 096%24,24) 

Appendix 3. Generalized partial codes Gim) 

Model TiOG 

G(78) = 16(14, 5,610, 1,2)+6(14,6,410,2,2)+4(15,5,611,3) 

+8(15, 5,810, 1, 1)+64(15,6,610,2, 1)+8(15,6,611,0,2) 

+80(15,7,410,3, 1)+16(15,8,210,4, l)+2(16,4, 1210) 

+20(16, 5, 1010, 1)+ 104(16,6,8(0,2)+8(16,6,8(1,0, 1) 

+216(16,7,610,3)+ 140(16,7,611, 1, 1)+ 184(16,8,4(0,4) 

+ 168(16, 8,411,2, 1)-40(16,8,6~0,0,2)+40(16,9,2(0, 5) 

+28(16,9,2)1, 3, 1)-48(17, 8,8)0,0, 1)-648(17,9,610, 1, 1) 

-616(17, 10,410,2, 1)-88(17, 11,210, 3, 1) 

GL8) = 2(15,4,810,0, 3)+4(15, 5,610, 1,3)+ 1(16,4,810,4) 

+16(16, 5, 810, 1, 2)+68(16, 6, 610, 2, 2)+48(16, 7, 410, 3, 2) 

+2(16,8,210,4,2)+8(17, 5, 1010, 1, 1)+100(17,6,810,2, 1) 

+ 18(17,6,811,0,2)+300(17,7,6~0,3, 1)+80(17,7,611, 1,2) 

+238(17,8,410,4, 1)+36(17,8,411,2,2)+28(17,9,210, 5, 1) 

+2(17,10,0~0,6,l)-11~18,8,8~0,0,2)-368(18,9,6~0,1,2) 

- 138(18, 10,410,2,2) 

GL8’ = 1(16,4,8)0,0,4)+ 16(17, 5,810, 1,3)+48(17,6,6)0,2,3) 

+8(17,7,410,3,3)+ 16(18,5, 1010, 1,2)+ 148(18,6,810,2,2) 

+8(18,6,811,0,3)+300(18,7,610,3,2)+20(18,7,611, 1,3) 

+ 172(18,8,410,4,2)+20(18,9,210,5,2)-48(19, 8,810,0, 3) 

-96(19,9,610, 1,3) 

Gi;) = 2(18,4, 1010,0,4)+ 16(18, 5,810, 1,4)+ 12(18,6,610,2,4) 

+ 16(19, 5, 1010, 1,3)+ 116(19,6,810,2,3)+4(19,6,8(1,0,4) 

+ 268(19,7,610,3, 3)+ 78(19,8,410,4,3)+4(19,9,210,5,3) 

- 25(20,8,810,0,4) 
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G\8) = 8(19, 5,810, 1, 5)+24(20, 5, lO(0, 1,4)+ 136(20,6,810,2,4) 

+ 128(20,7,610,3,4)+22(20,8,4(0,4,4) 

+92(21,6,810,2, 5)+44(21, 7,610, 3, 5)+ 1(21,8,410,4, 5) 

G‘i8j) = 2(20,4, 1010,0,6)+2(21,4, 1210,0,5)+ 12(21,5, 1010, 1,5) 

Gi82 = 24(22, 5, 1010, 1,6)+40(22,6,8(0,2,6)+4(22, 7,610, 3,6) 

G\2  = 16(23,5, 1010, 1,7)+6(23,6,810,2,7) 

G‘,83 = 2(24,4, 1210,0,8)+4(24, 5, 1010, 1 ,8)  

G\? = 1(25,4, 12(0,0,9) 

Model B 

G\’) = 4(17, 10,0(3,4)+12(18,9,216, l)+8(19, 10,217)+22(20, 12,018)+112(21, 14,017) 

G(8’) = 6(22, 12,0(10)+ 134(23, 14,019) 

Gb” = l(24, 12,0112)+72(25, 14,0111) 

G\’J = 30(27,14,0113) 

G\’) = 8(29, 14,0115) 

GYj) = 2(31, 14,0117) 

Appendix 4. Additional generalized codes 

Model T/OG 

G, : 40(17,6, loll) 

G, : 2(18,4, 14(0)+8(18,6, 10(1,0, 1)+24(18, 5, 1210, 1) 

G, : 8(19, 5, 1210, 1, 1)+ 16(19,6, 1011,0,2)+2(20,4, 1610) 

G,,,: 
G, : 16(21, 5, 1210, 1,3)+ 16(21,6. 10(1,0,4) 

G,, : 24(22, 5, 1210, 1,4) 

G,, : 16(23, 5, 1210, 1, 5)+8(23,6, 1011,0,6) 

G 1 4 :  2(24,4, 1410,0,6)+32(24,5, 1210, 1,6) 

G,, : 8(25,5, 1210, 1,7) 

G 1 6 :  

G I ,  : 

16(20, 5, 1210, 1,2)+24(20,6, 1011,0,3)+2(22,4, 1810) 

32(26, 5, 1210, 1,8)+2(27,4, 1610,0,7) 

24(27, 5, 1210, 1,9) 

G i g :  2(28,4, 1410,O, IO)+ 16(28, 5, 1210, 1, 10)+2(30,4, 1810,0,8) 

G,, : 8(29, 5, 1210, 1 , l l )  

G,, : 2(30,4, 1410,0, 12) 
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G21 : 2(32,4, 16(0,0, 12) 

G24: 

G25 : 1(36,4,1610,0, 16) 

G 2 8 :  2(4O, 4, 1810,O, 18) 

2(35,4, 1610,0, 15)+2(36,4, 1810,0, 14) 

G,, : 2(42,4, 1810,0,20) 

Model B 

16(14, 5,610, 1,2)+6(14,6,410,2,2)+4(15, 5,611,3) 

+8(15, 5,810, 1, 1)+64(15,6,610,2, 1)+8(15,6,611,0,2) 

+2(16,4, 1210)+4(16,6,612,2)+8(16,6,811,0, 1) 

+20(17, 7,613, 1)+72(17, 8,612,0, 1)+24(18,8,614) 

+68(16,6,610,2,2)+ 16(17,6,612,2, 1)+ 18(17,6,811,0,2) 

+80(17,7,6(1, 1,2)+36(18,8,612,0,2)+ 16(18,7,6(3, 1, 1) 

+4(19,8,614,0, 1) 

+8(16,7,413, 1, 1)+ 140(16,7,611, 1, 1)-40(16,8,610,0,2) 

2(15,4,810,0, 3)+4(15, 5,610, 1,3)+ 16(16, 5,810, 1,2) 

1(16,4,810,0,4)+ 16(17, 5,810, 1, 3)+48(17,6,610,2,3) 

+4(18,6,612,2,2)+8(18,6,811,0, 3)+20(18,7,6)1, 1,3) 

+8(19,7,613, 1,2) 

2(18,4, 10)0,0,4)+ 16(18, 5,810, 1,4)+ 12(18,6,610,2,4) 

+4(19,6, 811,0,4)+4(20,7,613, 1,3) 

8(19,5,810, 1,5) 

2(20,4, 10(0,0,6)+2(21,4, 12(0,0, 5)  

2(24,4, 1210,0,8) 

1(25,4, 12(0,0,9) 
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